5 research outputs found

    An Efficient Deep-Learning-Based Detection and Classification System for Cyber-Attacks in IoT Communication Networks

    Get PDF
    With the rapid expansion of intelligent resource-constrained devices and high-speed communication technologies, the Internet of Things (IoT) has earned wide recognition as the primary standard for low-power lossy networks (LLNs). Nevertheless, IoT infrastructures are vulnerable to cyber-attacks due to the constraints in computation, storage, and communication capacity of the endpoint devices. From one side, the majority of newly developed cyber-attacks are formed by slightly mutating formerly established cyber-attacks to produce a new attack that tends to be treated as normal traffic through the IoT network. From the other side, the influence of coupling the deep learning techniques with the cybersecurity field has become a recent inclination of many security applications due to their impressive performance. In this paper, we provide the comprehensive development of a new intelligent and autonomous deep-learning-based detection and classification system for cyber-attacks in IoT communication networks that leverage the power of convolutional neural networks, abbreviated as IoT-IDCS-CNN (IoT based Intrusion Detection and Classification System using Convolutional Neural Network). The proposed IoT-IDCS-CNN makes use of high-performance computing that employs the robust Compute Unified Device Architectures (CUDA) based Nvidia GPUs (Graphical Processing Units) and parallel processing that employs high-speed I9-core-based Intel CPUs. In particular, the proposed system is composed of three subsystems: a feature engineering subsystem, a feature learning subsystem, and a traffic classification subsystem. All subsystems were developed, verified, integrated, and validated in this research. To evaluate the developed system, we employed the Network Security Laboratory-Knowledge Discovery Databases (NSL-KDD) dataset, which includes all the key attacks in IoT computing. The simulation results demonstrated a greater than 99.3% and 98.2% cyber-attack classification accuracy for the binary-class classifier (normal vs. anomaly) and the multiclass classifier (five categories), respectively. The proposed system was validated using a K-fold cross-validation method and was evaluated using the confusion matrix parameters (i.e., true negative (TN), true positive (TP), false negative (FN), false positive (FP)), along with other classification performance metrics, including precision, recall, F1-score, and false alarm rate. The test and evaluation results of the IoT-IDCS-CNN system outperformed many recent machine-learning-based IDCS systems in the same area of study

    Nanosensor Data Processor in Quantum-Dot Cellular Automata

    Get PDF
    Quantum-dot cellular automata (QCA) is an attractive nanotechnology with the potential alterative to CMOS technology. QCA provides an interesting paradigm for faster speed, smaller size, and lower power consumption in comparison to transistor-based technology, in both communication and computation. This paper describes the design of a 4-bit multifunction nanosensor data processor (NSDP). The functions of NSDP contain (i) sending the preprocessed raw data to high-level processor, (ii) counting the number of the active majority gates, and (iii) generating the approximate sigmoid function. The whole system is designed and simulated with several different input data

    An Efficient Deep-Learning-Based Detection and Classification System for Cyber-Attacks in IoT Communication Networks

    No full text
    With the rapid expansion of intelligent resource-constrained devices and high-speed communication technologies, the Internet of Things (IoT) has earned wide recognition as the primary standard for low-power lossy networks (LLNs). Nevertheless, IoT infrastructures are vulnerable to cyber-attacks due to the constraints in computation, storage, and communication capacity of the endpoint devices. From one side, the majority of newly developed cyber-attacks are formed by slightly mutating formerly established cyber-attacks to produce a new attack that tends to be treated as normal traffic through the IoT network. From the other side, the influence of coupling the deep learning techniques with the cybersecurity field has become a recent inclination of many security applications due to their impressive performance. In this paper, we provide the comprehensive development of a new intelligent and autonomous deep-learning-based detection and classification system for cyber-attacks in IoT communication networks that leverage the power of convolutional neural networks, abbreviated as IoT-IDCS-CNN (IoT based Intrusion Detection and Classification System using Convolutional Neural Network). The proposed IoT-IDCS-CNN makes use of high-performance computing that employs the robust Compute Unified Device Architectures (CUDA) based Nvidia GPUs (Graphical Processing Units) and parallel processing that employs high-speed I9-core-based Intel CPUs. In particular, the proposed system is composed of three subsystems: a feature engineering subsystem, a feature learning subsystem, and a traffic classification subsystem. All subsystems were developed, verified, integrated, and validated in this research. To evaluate the developed system, we employed the Network Security Laboratory-Knowledge Discovery Databases (NSL-KDD) dataset, which includes all the key attacks in IoT computing. The simulation results demonstrated a greater than 99.3% and 98.2% cyber-attack classification accuracy for the binary-class classifier (normal vs. anomaly) and the multiclass classifier (five categories), respectively. The proposed system was validated using a K-fold cross-validation method and was evaluated using the confusion matrix parameters (i.e., true negative (TN), true positive (TP), false negative (FN), false positive (FP)), along with other classification performance metrics, including precision, recall, F1-score, and false alarm rate. The test and evaluation results of the IoT-IDCS-CNN system outperformed many recent machine-learning-based IDCS systems in the same area of study

    Fuzzy Behaviors for Control of Mobile Robots

    No full text
    In this research work, an RWI B-14 robot has been used as the development platform to embody some basic behaviors that can be combined to build more complex robotics behaviors. Emergency, avoid-obstacle, left wall- following, right wall-following, and move-to-point behaviors have been designed and embodied as basic robot behaviors. The basic behaviors developed in this research are designed based on fuzzy control technique and are integrated and coordinated to from complex robotics system. More behaviors can be added into the system as needed. A robot task can be defined by the user and executed by the intelligent robot control system. Testing results showed that fuzzy behaviors made the robot move intelligently and adapt to changes in its environment

    ADAPTIVE GENETIC ALGORITHMS APPLIED TO DYNAMIC MULTI-OBJECTIVE PROBLEMS

    No full text
    This paper describes an application of adaptive genetic algorithms in which multi-objectives such as minimizing the territory loses and maximizing enemy aircraft loses are achieved by finding the optimum war allocation scenario simulated by the THUNDER software. A genetic algorithm with two fuzzy logic based mechanisms is used. In the first mechanism, the mutation and crossover rates are changed adaptively to provide a fast and smooth convergence to the optimum possible solutions. In the second mechanism, the multi-objective fitness function coefficients are changed dynamically in each run. Comparisons of the results of the best fitness values, the adaptive genetic algorithms with dynamic fitness function improve the convergence rates considerably and maintain smoother convergence to the best possible solutions than that of the conventional genetic algorithms
    corecore